[1]楊坤,池強,李鶴,等.高鋼級天然氣輸送管道止裂預測模型研究進展[J].石油管材與儀器,2019,5(04):9-14.[doi:10.19459/j.cnki.61-1500/te.2019.04.002]
 YANG Kun,CHI Qiang,LI He,et al.Research on the Crack Arrest Prediction Models and Their Progress for High Grade Steel of Natural Gas Pipeline[J].Petroleum Tubular Goods & Instruments,2019,5(04):9-14.[doi:10.19459/j.cnki.61-1500/te.2019.04.002]
點擊復制

高鋼級天然氣輸送管道止裂預測模型研究進展
分享到:

《石油管材與儀器》[ISSN:2096-0077/CN:61-1500/TE]

卷:
5
期數:
2019年04期
頁碼:
9-14
欄目:
綜述
出版日期:
2019-08-20

文章信息/Info

Title:
Research on the Crack Arrest Prediction Models and Their Progress for High Grade Steel of Natural Gas Pipeline
文章編號:
2096-0077(2019)04--0009-06
作者:
楊坤池強李鶴張偉衛霍春勇
中國石油集團石油管工程技術研究院,石油管材及裝備材料服役行為與結構安全國家重點實驗室 陜西 西安 710077
Author(s):
YANG Kun CHI Qiang LI He ZHANG Weiwei HUO Chunyong
CNPC Tubular Goods Research Institute, State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi′an, Shaanxi 710077, China
關鍵詞:
延性斷裂止裂預測BTC模型能量釋放率
Keywords:
ductile fracture crack arrest prediction Battelle two curves model energy release rate
分類號:
TE973
DOI:
10.19459/j.cnki.61-1500/te.2019.04.002
文獻標志碼:
A
摘要:
針對天然氣管道延性斷裂的長程擴展行為,總結了基于Battelle雙曲線的止裂預測模型及其改進方法的發展,提出了基于高鋼級管道能量釋放率和流變應力修正后的止裂預測模型TGRC-1以及基于落錘撕裂能量的止裂預測模型TGRC-2,并對模型的計算結果進行了分析。結果表明:針對西氣東輸天然氣組分,TGRC-1和TGRC-2的預測結果均比Battle雙曲線模型(BTCM)的預測結果安全和保守,而TGRC-2模型的預測結果比TGRC-1模型的預測結果安全和保守。
Abstract:
Crack arrest prediction models and their development models based on Battelle two curves method for the ductile fracture propagation of natural gas pipeline for long distance were summarized. Moreover, two development crack arrest models, TGRC-1 and TGRC-2, which are respectively based on the energy release rate and flow stress correction of high grade steel and drop weight energy, were presented. The results of the models were analyzed. It is shown that aimed at natural gas components for Gas Transmission from West to East, the prediction results of TGRC-1 and TGRC-2 are safer and more conservative than those of BTCM, and the prediction results of TGRC-2 model are safer and more conservative than those of TGRC-1 model.

參考文獻/References:

[1] PINEAU A,ARGON AS. Topics in fracture and fatigue. Berlin: Spinger, 1992.
[2] MAXOY WA. Fracture Initiation, Propagation and Arrest[C]. Proceedings of 5th Symposium on Line Pipe Research. 1974, AGA Catalogue no L30174, J1-J31.
[3] BEREMIN FM, NEMAT-NASSER S. Three-dimensional constitutive relations of damage and fracture. Oxford: Pergamon Press, 1981.
[4] SHIMA S, OYANE M. Int J Mech Sci 1976, 18: 285-291.
[5] PARTEDER E, RIEDEL H, SUN DZ. Int J Refrac Met Hard Mater, 2002, 20: 287-293.
[6] A.A. BENZERGA, J. BESSON, A. PINEAU. Anisotropic Ductile Fracture Part I: Experiments. Acta Materialia, 2004, 52: 4623-4638.
[7] A.A. BENZERGA, J. BESSON, A. PINEAU. Anisotropic Ductile Fracture Part II: Theory. Acta Materialia, 2004, 52: 4639-4650.
[8] G. MIRONE, D. CORALLO. Stress–strain and Ductile Fracture Characterization of an X100 Anisotropic Steel: Experiments and Modelling. Engineering Fracture Mechanics, 2013, 102: 119-145.
[9] DRUCKER DC, PRAGER W. Soil Mechanics and Plastic Analysis for Limit Design. Q Appl Math 1952,10(2): 157-65.
[10] BIGONI D, PICCOLROAZ A. Yield Criteria for Quasi Brittle and Frictional Materials. Int J Solids Struct, 2004, 41: 2 855-2 878.
[11] BAI Y, WIERZBICKIT. A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. Int J Plast, 2007, 24: 1071-1096.
[12] BARLAT F, LEGE DJ, BREM JC. A Six-Component Yield Function for Anisotropic Materials. Int J Plast, 1991, 7: 693-712.
[13] HILL R. User-friendly Theory of Orthotropic Plasticity in Sheet Metals. Int J Mech Sci 1993, 35(1): 19-25.
[14] BRON F, BESSONJ. A Yield Function for Anisotropic Materials: Application to Aluminum Alloys. Int J Plast, 2004,20: 937-63.
[15] BRIDGMAN PW. Studies in Large Flow and Fracture. McGraw Hill, 1956.
[16] XianKui ZHU. Stateoftheart Review of Fracture Control Technology for Modern and Vintage Gas Transmission Pipelines[J]. Engineering Fracture Mechanics, 2015, 148: 260-280.
[17] Maciej WITEK. Possibilities of Using X80, X100, X120 High-Strength Steels for Onshore Gas Transmission Pipelines[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 374-384.
[18] B. N. LEIS, S. M. PIMPUTKAR, N. D. GHADIALI. Line Rupture and the Spacing of Parallel Lines[G]. Max Toch PRCI Publication, Virginia: Pipeline Research Council International, 2002.

相似文獻/References:

[1]吉玲康,霍春勇,李鶴.我國高壓長輸天然氣管道的斷裂控制[J].石油管材與儀器,2016,(06):1.
 JI Lingkang,HUO Chunyong,LI He.Fracture Control for High Pressure Natural Gas Pipeline with Long Distance in China[J].Petroleum Tubular Goods & Instruments,2016,(04):1.

備注/Memo

備注/Memo:
基金項目:國家重點研發項目《油氣長輸管道及儲運設施檢驗評價與安全保障技術》課題“油氣管道及儲運設施損傷致災機理與演化規律” (項目編號:2016YFC0802101);中石油科學研究與技術開發項目《大口徑天然氣管道建設關鍵技術》課題“高鋼級管道失效控制技術”(項目編號:2016B-3002);《公司發展戰略與科技基礎工作決策支持研究》課題“重點實驗室/試驗基地建設與運行管理”(項目編號:2107D-5006-12)。 第一作者簡介:楊坤,男,1985年生,高級工程師,2013年畢業于西北工業大學材料學專業,獲博士學位,現主要從事油氣輸送管的應用技術研究。E-mail:[email protected]
更新日期/Last Update: 2019-08-25
360双色球走势图表大全