[1]童茂松,張加舉,丁柱.0.2 m高分辨率雙側向測井儀器信號幅度仿真[J].石油管材與儀器,2019,5(04):19-22.[doi:10.19459/j.cnki.61-1500/te.2019.04.004]
 TONG Maosong,ZHANG Jiaju,DING Zhu.Signal Amplitude Analysis of 0.2 mverticalresolution Dual Laterolog Tool[J].Petroleum Tubular Goods & Instruments,2019,5(04):19-22.[doi:10.19459/j.cnki.61-1500/te.2019.04.004]
點擊復制

0.2 m高分辨率雙側向測井儀器信號幅度仿真
分享到:

《石油管材與儀器》[ISSN:2096-0077/CN:61-1500/TE]

卷:
5
期數:
2019年04期
頁碼:
19-22
欄目:
開發設計
出版日期:
2019-08-20

文章信息/Info

Title:
Signal Amplitude Analysis of 0.2 mverticalresolution Dual Laterolog Tool
文章編號:
2096-0077(2019)04--0019-04
作者:
童茂松張加舉丁柱
中國石油集團測井有限公司大慶分公司 黑龍江 大慶 163412
Author(s):
TONG Maosong ZHANG Jiaju DING Zhu
China Petroleum Logging Co. Ltd., Daqing Branch, Daqing, Heilongjiang 163412,China
關鍵詞:
0.2 m高分辨率雙側向測井數值模擬電路仿真數字聚焦
Keywords:
0.2 mverticalresolution dual laterolog numeric simulation circuit simulation digital focusing
分類號:
P631.4+3
DOI:
10.19459/j.cnki.61-1500/te.2019.04.004
文獻標志碼:
A
摘要:
為解決油田勘探開發后期薄層評價需求與測井儀器縱向分辨率低的矛盾,需要開發統一分辨率達到0.2 m的高分辨率測井系列,尤其是作為主力裝備的高分辨率雙側向測井儀器。采用數字聚焦技術實現高分辨率雙側向測量,通過數值模擬技術與電路仿真技術相結合的方法,研究0.2 m高分辨率雙側向測井儀器的探測特性與不同地層條件下的測量信號幅度,指導儀器實現。設計的雙側向測井儀器縱向分辨率達到0.2 m,深淺側向的探測深度分別達到1.45 m和0.46 m,該儀器在高阻層(2 000 .m)的信號幅度低至微伏級,對測量電路提出了更高的要求。根據數值模擬與電路仿真結果,開發的0.2 m高分辨率雙側向測井儀器在大慶油田和吉林油田已經應用300多口井,為薄層及薄互層評價提供了可信的資料。
Abstract:
In order to solve the contradiction between the requirement of thin layer evaluation and low vertical resolution of logging tools in the later stage of oil field exploration and development, it is necessary to develop high resolution logging tools with uniform resolution up to 0.2 m, especially the dual laterolog tool as the main equipment. High resolution dual laterolog is realized by digital focusing technology. The detection characteristics of 0.2 m high resolution dual laterolog and the measured signal amplitude under different formation conditions are studied by combining numerical simulation technology with circuit simulation technology to guide the realization of the instrument. Results show that the vertical resolution of the designed dual laterolog tool is 0.2 m, the investigation depth of deep and shallow laterolog is 145 m and 0.46 m, respectively. The signal amplitude of the tool in high resistivity layer (2 000.m) is low to microvolt level, which puts forward higher requirements for measuring circuit. According to the results of numerical simulation and circuit simulation, the developed 0.2 m high resolution dual laterolog tool has been applied in more than 300 wells in Daqing Oilfield and Jilin Oilfield, providing credible information for thin layer evaluation.

參考文獻/References:

[1] 安豐全,唐煉,牛華,等.利用常規測井資料進行薄層評價[J]. 石油學報,1994,15(4):1-8.
[2] 陶宏根.超薄層(0.2m)測井技術研究[D]. 長春:吉林大學,2012.
[3] FENG W L,JING W X,TONG M S,et al.High-resolution Logging Technologies of Daqing Oil Field.Technical papers for 2010 CNPC international wellbore technology seminar[C], Beijing: Petroleum Industry Press.
[4] 郭興鋼.井壁取心資料在油層水淹解釋中的應用[J]. 大慶石油地質與開發,2008,27(5):74-77.
[5] 趙延文,聶在平.雙側向電阻率測井反演算法研究[J]. 地球物理學報,1998,41(3):424-430.
[6] 丁柱,鄧剛,馬恩軍,等.高分辨率雙側向測井儀[J]. 測井技術,2002,26(4):531-533.
[7] 史謌,何濤,仵岳奇,等.用正演數值計算方法開展雙側向測井對裂縫的響應研究[J]. 地球物理學報,2004,47(2):359-363.
[8] 譚茂金,高杰,鄒友龍,等.鹽水泥漿條件下定向井雙側向測井環境校正方法研究[J]. 地球物理學報,2012,54(2):1422-1432.
[9] 丁柱,楊長春,李劍浩,等.高分辨率雙側向測井儀理論設計的新方法[J]. 大慶石油地質與開發, 2002,21(1):75-76.
[10] 鈕宏,趙養真,區廣宇.高分辨率雙側向測井儀的影響因素分析[J]. 測井技術,2010,34(1):98-102.
[11] 王昌學,王亞杰,儲昭坦,等.一種高分辨率雙側向測井儀[J]. 測井技術,2003,27(1):72-74.
[12] 王恒,李建平,王愛英,等.高分辨率雙側向測井儀的應用[J]. 石油儀器,2007,21(3):27-28.
[13] 朱軍,馮琳偉.高分辨率雙側向測井響應數值模擬分析[J]. 石油地球物理勘探,2007,42(4):457-462.
[14] 童茂松,宋建華.0.2m分辨率雙側向測井儀器數值模擬[J]. 地球物理學進展,2014,29(05) :2251-2257.
[15] 曹揚,孫東利,張連成,等.雙側向儀器地層仿真校驗系統設計[J]. 國外測井技術,2016,37(1) :56-59

相似文獻/References:

[1]鄧茜珊,丁慶榮.抽油桿運動對高分辨率電導含水率計測量持水率影響的數值模擬分析[J].石油管材與儀器,2017,3(01):80.[doi:10.19459/j.cnki.61-1500/te.2017.01.019]
 DENG Xishan,DING Qingrong.Numerical Simulation Analysis on Influences of Sucker Rod Morement on WaterHoldup Measurement with the Highresolution Conductance Watercut Meter[J].Petroleum Tubular Goods & Instruments,2017,3(04):80.[doi:10.19459/j.cnki.61-1500/te.2017.01.019]
[2]鄧茜珊.近水平DN 20仿儀器流道數值模擬分析[J].石油管材與儀器,2017,3(04):96.[doi:10.19459/j.cnki.61-1500/te.2017.04.025]
 DENG Xishan.Numerical Simulation of Nearhorizontal DN 20 Flow Channel in Simulation Instruments[J].Petroleum Tubular Goods & Instruments,2017,3(04):96.[doi:10.19459/j.cnki.61-1500/te.2017.04.025]
[3]姜兆宇,楊韻桐.雙級分流傘氣液分離裝置的設計及數值模擬[J].石油管材與儀器,2018,4(04):12.[doi:10.19459/j.cnki.61-1500/te.2018.04.003]
 JIANG Zhaoyu,YANG Yuntong.Design and Numerical Simulation of Doublegrade Gasliquid Separator[J].Petroleum Tubular Goods & Instruments,2018,4(04):12.[doi:10.19459/j.cnki.61-1500/te.2018.04.003]
[4]姚池.脈沖中子測井儀BGO探測器響應函數數值模擬研究[J].石油管材與儀器,2018,4(04):28.[doi:10.19459/j.cnki.61-1500/te.2018.04.007]
 YAO Chi.Numerical Simulation Research on Influence Factors of BGO Detector Response in Pulse Neutron Logging Tool[J].Petroleum Tubular Goods & Instruments,2018,4(04):28.[doi:10.19459/j.cnki.61-1500/te.2018.04.007]
[5]于其明.磨料射流噴嘴磨損規律的研究[J].石油管材與儀器,2018,4(05):40.[doi:10.19459/j.cnki.61-1500/te.2018.05.012]
 YU Qiming.Nozzle Wear Rule Research of Abrasive Water Jet[J].Petroleum Tubular Goods & Instruments,2018,4(04):40.[doi:10.19459/j.cnki.61-1500/te.2018.05.012]
[6]楊韻桐.低產液高含水油氣水三相流氣液分離裝置設計及分離效率研究[J].石油管材與儀器,2019,5(03):6.[doi:10.19459/j.cnki.61-1500/te.2019.03.002]
 YANG Yuntong.Design of Gasliquid Separation Device for Lowyield Liquid and Highwatercut Oilgaswater Threephase Flow and Separation Efficiency Study[J].Petroleum Tubular Goods & Instruments,2019,5(04):6.[doi:10.19459/j.cnki.61-1500/te.2019.03.002]
[7]王倩.基于數值模擬的T型管道流場參數正交優化[J].石油管材與儀器,2019,5(01):55.[doi:10.19459/j.cnki.61-1500/te.2019.01.014]
 WANG Qian.Orthogonal Optimization of Flow Field Parameters for TPipe Based on Numerical Simulation[J].Petroleum Tubular Goods & Instruments,2019,5(04):55.[doi:10.19459/j.cnki.61-1500/te.2019.01.014]
[8]劉洪濤,沈新普,王克林,等.含伸縮管的超深高溫高壓氣井完井測試管柱三維力學行為分析[J].石油管材與儀器,2019,5(05):59.[doi:10.19459/j.cnki.61-1500/te.2019.05.014]
 LIU Hongtao,SHEN Xinpu,WANG Kelin,et al.3D Mechanical Analysis on Completion Testing Tubing String with Expansion Pipe Section for Extradeep HPHT Wells[J].Petroleum Tubular Goods & Instruments,2019,5(04):59.[doi:10.19459/j.cnki.61-1500/te.2019.05.014]

備注/Memo

備注/Memo:
基金項目:大慶油田有限責任公司重大科技專項“0.2 m高分辨率水淹層測井技術研究”(項目編號:dqc-2012-cs-ky-003)。 第一作者簡介:童茂松,男,1971年生,高級工程師,2001年畢業于吉林大學微電子學與固體電子學專業,博士(后),主要從事測井方法研究與儀器研發。E-mail: [email protected]
更新日期/Last Update: 2019-08-25
360双色球走势图表大全